题目内容
【题目】随着全民健康运动的普及,每天一万步已经成为一种健康时尚,某学校为了教职工健康工作,在全校范围内倡导“每天一万步”健步走活动,学校界定一人一天走路不足4千步为健步常人,不少于16千步为健步超人,其他为健步达人,学校随机抽查了36名教职工,其每天的走步情况统计如下:
步数 |
|
|
|
人数 | 6 | 18 | 12 |
现对抽查的36人采用分层抽样的方式选出6人
(1)求从这三类人中各抽多少人;
(2)现从选出的6人中随机抽取2人,求这两人健步类型相同的概率.
【答案】(1)健步常人中抽:
人,健步超人中抽:
人,健步达人中抽:
人.(2)![]()
【解析】
(1)根据分层抽样的特征,直接计算,即可得出结果;
(2)记选出6人分别为
,
,
,
,
,
,用列举法,分别列举出总的基本事件,以及“这两人健步类型相同”包含的基本事件,基本事件个数比即为所求概率.
(1)对抽查的36人采用分层抽样的方式选出6人,
则健步常人中抽:
人,
健步超人中抽:
人,
健步达人中抽:
人.
(2)记选出6人分别为
,
,
,
,
,
,
从中抽取2人的结果有15种,分别为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
其中健康状况-致的结果有4种,分别为:
,
,
,
,
∴从选出的6人中随机抽取2人,这两人健步类型相同的概率
.
练习册系列答案
相关题目