题目内容
平面直角坐标系中,O为坐标原点,已知两点A(2,1),B(x,y)若点B满足
⊥
,则点B的轨迹方程为______.
| OA |
| AB |
依题意,
=(2,1),
=(x,y),
∴
=(x-2,y-1)
∵
⊥
,∴(2,1)•(x-2,y-1)=0
∴2x+y-5=0
即点B的轨迹方程为2x+y-5=0
故答案为2x+y-5=0
| OA |
| OB |
∴
| AB |
∵
| OA |
| AB |
∴2x+y-5=0
即点B的轨迹方程为2x+y-5=0
故答案为2x+y-5=0
练习册系列答案
相关题目
平面直角坐标系中,O为坐标原点,已知两点A(3,1)、B(-1,3),若点C满足
=α
+β
,其中α、β∈R,且α+β=1,则点C的轨迹方程为( )
| OC |
| OA |
| OB |
| A、3x+2y-11=0 |
| B、(x-1)2+(y-2)2=5 |
| C、2x-y=0 |
| D、x+2y-5=0 |