题目内容
已知数列{an}的通项公式an=
,bn=
,则数列{bn}的前n项和为
.
| 1+2+…+n |
| n |
| 1 |
| anan+1 |
| 2n |
| n+2 |
| 2n |
| n+2 |
分析:利用等差数列的前n项和公式、“裂项求和”即可得出.
解答:解:∵an=
=
=
,∴bn=
=
=4(
-
),
∴数列{bn}的前n项和=4[(
-
)+(
-
)+…+(
-
)]
=4(
-
)=
.
故答案为
.
| 1+2+…+n |
| n |
| n(n+1) |
| 2n |
| n+1 |
| 2 |
| 1 |
| anan+1 |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴数列{bn}的前n项和=4[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=4(
| 1 |
| 2 |
| 1 |
| n+2 |
| 2n |
| n+2 |
故答案为
| 2n |
| n+2 |
点评:熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键.
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|