题目内容
(14分) 是定义在R上的函数,对都有,且当时,
。
(1)求证:为奇函数;
(2)求证:是R上的减函数;
(3)求在上的最值。
答案
(本小题满分14分) 设是定义在区间上的偶函数,命题:在上单调递减;命题:,若“或”为假,求实数的取值范围。
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.(Ⅰ)判断函数和是否为R上的“平底型”函数? 并说明理由;(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;(Ⅲ)若函数是区间上的“平底型”函数,求和的值..
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数和是否为R上的“平底型”函数?并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求和的值.
(本小题满分14分)
函数定义在区间[a, b]上,设“”表示函数在集合D上的最小值,“”表示函数在集合D上的最大值.现设,
,
若存在最小正整数k,使得对任意的成立,则称函数
为区间上的“第k类压缩函数”.
(Ⅰ) 若函数,求的最大值,写出的解析式;
(Ⅱ) 若,函数是上的“第3类压缩函数”,求m的取值范围.
(本小题满分14分)
函数是定义在(-1,1)上的奇函数,且,
(1)确定函数的解析式;
(2)用定义证明在(-1,1)上是增函数;
(3)解不等式