题目内容

正方体ABCD-A1B1C1D1棱长为1,平面α垂直于体对角线BD1,则该正方体在平面α上射影的面积是(  )
分析:依据题意画出图形,再利用全等三角形,将射影的面积转化为图形的面积.
解答:解:如图示,由题意知,
BD1⊥A1D,BD1⊥C1D,A1D∩C1D=D,
则平面A1C1D即为平面α

则该正方体在平面α上射影的面积即为:△A1AD,△A1C1B1,△CC1D在平面A1C1D上投影的面积再加上△A1C1D的面积
而△A1AD≌△A1C1B1≌△CC1D,且△A1AD≌△A1D1D,
故△A1AD,△A1C1B1,△CC1D在平面A1C1D上投影的面积为三倍的△A1D1D在平面A1C1D上投影的面积
而三倍的△A1D1D在平面A1C1D上投影的面积即为△A1C1D的面积
故该正方体在平面α上射影的面积为S=2SA1C1D=
3
4
×A1D2
=
3
4
×(
2
)2=
3

故选B
点评:本题考查正方体中有关的面积问题,考查了空间信息能力和逻辑思维能力.解题的关键是理解想象出要画出的平面是怎样的平面,有哪些特殊的性质,考虑全面就可以正确解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网