题目内容
定义在R上的函数满足f(0)=0 ,f(x)+f(1-x)=1 , f(
)=
f(x),且当0≤x1<x2≤1时,f(x1)≤f(x2),则f(
)=
.
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 2012 |
| 1 |
| 32 |
| 1 |
| 32 |
分析:依题意,可求得f(1)=1,f(
)=
,再分别利用f(
)=
f(x),可求得f(
)=f(
)=
,结合已知,即可求得答案.
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 5 |
| 1 |
| 2 |
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
解答:解:依题意知,f(1)=1,由f(
)+(1-
)=1得:f(
)=
,
又f(
)=
f(x),
∴f(
)=f(
)=
,
f(
)=f(
)=
,
f(
)=f(
)=
,
f(
)=f(
)=
,
f(
)=f(
)=
,
∵
<
<
,
当0≤x1<x2≤1时,f(x1)≤f(x2),
∴f(
)=
.
故答案为:
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
又f(
| x |
| 5 |
| 1 |
| 2 |
∴f(
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2 |
f(
| 1 |
| 25 |
| 1 |
| 10 |
| 1 |
| 4 |
f(
| 1 |
| 125 |
| 1 |
| 50 |
| 1 |
| 8 |
f(
| 1 |
| 625 |
| 1 |
| 250 |
| 1 |
| 16 |
f(
| 1 |
| 3125 |
| 1 |
| 1250 |
| 1 |
| 32 |
∵
| 1 |
| 3125 |
| 1 |
| 2012 |
| 1 |
| 1250 |
当0≤x1<x2≤1时,f(x1)≤f(x2),
∴f(
| 1 |
| 2012 |
| 1 |
| 32 |
故答案为:
| 1 |
| 32 |
点评:本题考查抽象函数及其应用,着重考查赋值法求值,考查递推关系式的灵活应用,属于中档题.
练习册系列答案
相关题目