题目内容

{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1a4=27,S4=24.
(1)求数列{an}的通项公式an
(2)令bn=
1anan+1
,求数列{bn}的前n项和Tn
分析:(1)利用等差数列的通项公式和前n项和公式即可得出;
(2)利用(1)和裂项求和即可得出.
解答:解:(1)S4=
4(a1+a4)
2
=24
,∴a1+a4=12
又a1a4=27,d>0,∴a1=3,a4=9,
∴9=3+3d,解得d=2,
∴an=2n+1.
(2)bn=
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

Tn=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n+1
-
1
2n+3
)]=
1
2
(
1
3
-
1
2n+3
)

=
n
6n+9
点评:熟练掌握等差数列的通项公式和前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网