题目内容
{an}为等差数列,公差d>0,Sn是数列{an}前n项和,已知a1a4=27,S4=24.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式an;
(2)令bn=
| 1 | anan+1 |
分析:(1)利用等差数列的通项公式和前n项和公式即可得出;
(2)利用(1)和裂项求和即可得出.
(2)利用(1)和裂项求和即可得出.
解答:解:(1)S4=
=24,∴a1+a4=12
又a1a4=27,d>0,∴a1=3,a4=9,
∴9=3+3d,解得d=2,
∴an=2n+1.
(2)bn=
=
=
(
-
),
Tn=
[(
-
)+(
-
)+…+(
-
)]=
(
-
)
=
.
| 4(a1+a4) |
| 2 |
又a1a4=27,d>0,∴a1=3,a4=9,
∴9=3+3d,解得d=2,
∴an=2n+1.
(2)bn=
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| n |
| 6n+9 |
点评:熟练掌握等差数列的通项公式和前n项和公式、裂项求和是解题的关键.
练习册系列答案
相关题目
已知数列{an}为等差数列,a4=2,a7=-4,那么数列{an}的通项公式为( )
| A、an=-2n+10 | ||
| B、an=-2n+5 | ||
C、an=-
| ||
D、an=-
|