题目内容

已知数列{an}的前n项和Sn=﹣an﹣(n﹣1+2(n为正整数).
(1)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)令cn=an,若Tn=c1+c2+…+cn,求Tn
解:(1)在Sn=﹣an﹣(n﹣1+2中
令n=1可得
S1=﹣a1﹣1+2=a1
即a1=
当n≥2时,an=Sn﹣S n﹣1=﹣an+a n﹣1+
∴2an=a n﹣1+

∵bn=2nan
∴bn﹣b n﹣1=1
即当n≥2时,bn﹣b n﹣1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.


(2)由(1)得
…+(n+1)  ①
=2×+3×+4×+…+(n+1)   ②
由①﹣②得
=1+++…+﹣(n+1)=
∴Tn=3﹣
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网