题目内容
数列{an},若满足点(an,an+1)在直线y=x+1上,并且a2+a5=9.
(1)求证数列{an}为等差数列,并求出通项an;
(2)若bn=
,求数列{bn}的前n项和Sn.
(1)求证数列{an}为等差数列,并求出通项an;
(2)若bn=
| 1 | anan+1 |
分析:(1)由点(an,an+1)在直线y=x+1上,知an+1=an+1,所以{an}是公差d=1的等差数列,再由a2+a5=9.解得a1=2.由此能求出an.
(2)由an=n+1,知bn=
=
=
-
,由裂项求和法能求出Sn.
(2)由an=n+1,知bn=
| 1 |
| anan+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:证明:(1)点(an,an+1)在直线y=x+1上,
∴an+1=an+1,
∴{an}是公差d=1的等差数列,
∵a2+a5=9.
∴a1+1+a1+4=9,
解得a1=2.
∴数列{an}是首项为2,公差为1的等差数列,
an=2+(n-1)×1=n+1.
解:(2)∵an=n+1,
∴bn=
=
=
-
,
∴Sn=b1+b2+…+bn
=(
-
)+(
-
)+…+(
-
)
=
-
=
.
∴an+1=an+1,
∴{an}是公差d=1的等差数列,
∵a2+a5=9.
∴a1+1+a1+4=9,
解得a1=2.
∴数列{an}是首项为2,公差为1的等差数列,
an=2+(n-1)×1=n+1.
解:(2)∵an=n+1,
∴bn=
| 1 |
| anan+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Sn=b1+b2+…+bn
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
=
| n-1 |
| 2n+2 |
点评:本题考查等差数列的证明和通项公式的求法,考查数列前n项和的求法,是中档题.解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
对于数列{an},若满足a1,
,
,…,
,…是首项为1,公比为2的等比数列,则a100等于( )
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| A、2100 |
| B、299 |
| C、25050 |
| D、24950 |