题目内容
求证:1+2x4≥2x3+x2.
证明:(1+2x4)-(2x3+x2)?
=2x3(x-1)-(x+1)(x-1)?
=(x-1)(2x3-x-1)?
=(x-1)(2x3-2x+x-1)?
=(x-1)[2x(x-1)(x+1)+(x-1)]?
=(x-1)2(2x2+2x+1)?
=(x-1)2[2(x+
)2+
]≥0,?
∴1+2x4≥2x3+x2.
练习册系列答案
相关题目
题目内容
求证:1+2x4≥2x3+x2.
证明:(1+2x4)-(2x3+x2)?
=2x3(x-1)-(x+1)(x-1)?
=(x-1)(2x3-x-1)?
=(x-1)(2x3-2x+x-1)?
=(x-1)[2x(x-1)(x+1)+(x-1)]?
=(x-1)2(2x2+2x+1)?
=(x-1)2[2(x+
)2+
]≥0,?
∴1+2x4≥2x3+x2.