题目内容
数列{an}的通项公式为an=
,则该数列的前100项和为
.
| 1 |
| n(n+1) |
| 100 |
| 101 |
| 100 |
| 101 |
分析:由an=
=
-
,考虑利用裂项相消可求数列的和
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:∵an=
=
-
∴S100=1-
+
-
+…+
-
=1-
=
故答案为:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S100=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 100 |
| 1 |
| 101 |
=1-
| 1 |
| 101 |
| 100 |
| 101 |
故答案为:
| 100 |
| 101 |
点评:本题主要考查了利用裂项求和方法的应用,属于基础试题
练习册系列答案
相关题目