题目内容
已知函数f(x)=cos(2x-
)+2sin(x-
)sin(x+
)
(1)求函数f(x)的最小正周期和图象的对称轴方程及对称中心;
(2)求函数f(x)在区间[-
,
]上的值域.
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
(1)求函数f(x)的最小正周期和图象的对称轴方程及对称中心;
(2)求函数f(x)在区间[-
| π |
| 12 |
| π |
| 2 |
f(x)=cos(2x-
)+2sin(x-
)sin(x+
)
=cos(2x-
)+2sin(x-
)cos(x-
)
=
cos2x+
sin2x+sin(2x-
)
=
cos2x+
sin2x-
cos2x
=-
cos2x+
sin2x
=sin(2x-
).
最小正周期 T=
=π,
由2x-
=kπ+
,k∈Z得图象的对称轴方程 x=
+
,k∈Z
由2x-
=kπ,k∈Z得x=
+
,对称中心(
+
,0),k∈Z
(2)当x∈[-
,
]时,2x-
∈[-
,
],由正弦函数的性质得值域为[-
,1].
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
=cos(2x-
| π |
| 3 |
| π |
| 4 |
| π |
| 4 |
=
| 1 |
| 2 |
| ||
| 2 |
| π |
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
=-
| 1 |
| 2 |
| ||
| 2 |
=sin(2x-
| π |
| 6 |
最小正周期 T=
| 2π |
| 2 |
由2x-
| π |
| 6 |
| π |
| 2 |
| kπ |
| 2 |
| π |
| 3 |
由2x-
| π |
| 6 |
| kπ |
| 2 |
| π |
| 12 |
| kπ |
| 2 |
| π |
| 12 |
(2)当x∈[-
| π |
| 12 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
| ||
| 2 |
练习册系列答案
相关题目