题目内容
(本小题满分15分)已知函数
,
(Ⅰ)判断函数![]()
的
奇偶性;
(Ⅱ)求函数
的单调区间;
(Ⅲ)若关于
的方程
在
上有实数解,求实数
的取值范围.
解:(Ⅰ)函数
的定义域为{
且
}
∴
为偶函数
(Ⅱ)当
时,
若
,则
,
递减;
若
, 则
,
递增.
再由
是
偶函数,
得
的递增区间是
和
;[来源:学科网ZXXK]
递减区间是
和
.
(Ⅲ)由
,得:
令![]()
![]()
当
,![]()
显然![]()
时,
,
时,
,![]()
∴
时,
∴若方程
有实数解,则实数
的取值范围是[1,+∞).
解析
练习册系列答案
相关题目