题目内容

定义在R上的函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0
,则f(2012)的值为______.
因为定义在R上的函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0

所以f(-1)=1,f(0)=0,f(1)=f(2)=-1,f(3)=0,f(4)=f(5)=1,f(6)=0,
当k∈Z时,f(1+6k)=f(2+6k)=-1,f(3+6k)=0,f(4+6k)=f(5+6k)=1,f(6k)=0,
f(2012)=f(6×335+2)=-1.
故答案为:-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网