题目内容

12.求证:${C}_{n}^{n}$+${C}_{n+1}^{n}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$=${C}_{2n+1}^{n+1}$.

分析 利用组合数公式${C}_{n}^{m+1}$+${C}_{n}^{m}$=${C}_{n+1}^{m+1}$,即可证明等式成立.

解答 证明:∵${C}_{n}^{m+1}$+${C}_{n}^{m}$=${C}_{n+1}^{m+1}$,
∴${C}_{n}^{n}$+${C}_{n+1}^{n}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$=(${C}_{n+1}^{n+1}$+${C}_{n+1}^{n}$)+${C}_{n+2}^{n}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$
=${C}_{n+2}^{n+1}$+${C}_{n+2}^{n}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$
=${C}_{n+3}^{n+1}$+…+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$
=…=${C}_{2n-1}^{n+1}$+${C}_{2n-1}^{n}$+${C}_{2n}^{n}$
=${C}_{2n}^{n+1}$+${C}_{2n}^{n}$
=${C}_{2n+1}^{n+1}$.

点评 本题考查了组合数公式的应用问题,也考查了逻辑推理与证明的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网