题目内容
已知偶函数f(x)=xm2-2m-3(m∈Z)在(0,+∞)上单调递减.
(1)求函数f(x)的解析式;
(2)若f(2a+1)=f(a),求实数a的值.
(1)求函数f(x)的解析式;
(2)若f(2a+1)=f(a),求实数a的值.
(1)由m2-2m-3<0得-1<m<3又m∈Z
∴m=0或1或2而m2-2m-3为偶数
∴m2-2m-3=-4,∴f(x)=x-4
(2)∵函数f(x)为偶函数,若f(2a+1)=f(a),
则|2a+1|=|a|,
即2a+1=a或2a+1=-a
∴a=-1或a=-
.
∴m=0或1或2而m2-2m-3为偶数
∴m2-2m-3=-4,∴f(x)=x-4
(2)∵函数f(x)为偶函数,若f(2a+1)=f(a),
则|2a+1|=|a|,
即2a+1=a或2a+1=-a
∴a=-1或a=-
| 1 |
| 3 |
练习册系列答案
相关题目
已知偶函数f(x+
),当x∈(-
,
)时,f(x)=x
+sinx,设a=f(1),b=f(2),c=f(3),则( )
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| 1 |
| 3 |
| A、a<b<c |
| B、b<c<a |
| C、c<b<a |
| D、c<a<b |