题目内容

以下命题中真命题的序号是
 

(1)?x∈R,x+
1x
≥2
恒成立;
(2)在△ABC中,若sin2A=sin2B,则△ABC是等腰三角形;
(3)对等差数列{an}的前n项和Sn,若对任意正整数n都有Sn+1>Sn,则an+1>an对任意正整数n恒成立;
(4)a=3是直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行且不重合的充要条件.
分析:通过举反例判断出①错;通过举反例判断出②错;通过举反例判断出③错;利用两条直线平行的充要条件判断出④对.
解答:解:对于①,当x<0时,x+
1
x
≤-2
,故①错
对于②,例如A=
π
6
,B=
π
3
满足sin2A=sin2B,但△ABC不是等腰三角形,故②错
对于③,例如等差数列{an}的通项为an=1,满足对任意正整数n都有Sn+1>Sn但an+1=an,故③错
对于④,直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行且不重合的充要条件是a(a-1)=2×3,但a(7-a)≠9a即a=3
故④对
故答案为④
点评:解决判断一个全称命题的不对问题,一般利用举反例进行判断说明即可;要判断一个全称命题是真必须进行证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网