题目内容
已知正项数列{an}的前n和为Sn,且
是
与(an+1)2的等比中项.
(1)求证:数列{an}是等差数列;
(2)若bn=
,数列{bn}的前n项和为Tn,求Tn;
(3)在(2)的条件下,是否存在常数λ,使得数列{
}为等比数列?若存在,试求出λ;若不存在,说明理由.
| Sn |
| 1 |
| 4 |
(1)求证:数列{an}是等差数列;
(2)若bn=
| an |
| 2n |
(3)在(2)的条件下,是否存在常数λ,使得数列{
| Tn+λ |
| an+2 |
(1)∵Sn=
(an+1)2,∴a1=S1=
(a1+1)2,∴a1=1(an>0)
当n≥2时,an=Sn-Sn-1=
(an+1)2-
(an-1+1)2,∴(an+an-1)(an-an-1-2)=0
∵an>0,
∴an-an-1=2,
∴{an}为等差数列.(4')
(2)由(1)知,{an}是以1为首项,2为公差的等差数列,
∴an=2n-1
∴bn=
,①
Tn=
+
+…+
,①
Tn=
+
+
+…+
+
②
①-②得:
Tn=
+2(
+
+
+
)-
∴Tn=3-
(9')
(3)∵
=(3-
+λ)
=
-
易知,当λ=-3时,数列{
}为等比数列.(13')
| 1 |
| 4 |
| 1 |
| 4 |
当n≥2时,an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 4 |
∵an>0,
∴an-an-1=2,
∴{an}为等差数列.(4')
(2)由(1)知,{an}是以1为首项,2为公差的等差数列,
∴an=2n-1
∴bn=
| 2n-1 |
| 2n |
Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 5 |
| 24 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 2n-3 |
| 2n |
(3)∵
| Tn+λ |
| an+2 |
| 2n+3 |
| 2n |
| 1 |
| 2n+3 |
| 3+λ |
| 2n+3 |
| 1 |
| 2n |
易知,当λ=-3时,数列{
| Tn+λ |
| an+2 |
练习册系列答案
相关题目