题目内容

如图,正四棱柱ABCD—A1B1C1D1,AA1=AB,点E、M分别为A1B,C1C的中点,过A1、B、M三点的平面A1BMN交C1D1于点N.

(1)求证:EM∥A1B1C1D1;

(2)求二面角B-A1N-B1的正切值.

解法一:(1)证明:取A1B1的中点F,连结EF,C1F.

∵E为A1B中点,

∴EFBB1.                                                             

又∵M为CC1中点,∴EFC1M.

∴四边形EFC1M为平行四边形.

∴EM∥FC1.                                                              

而EM平面A1B1C1D1,FC1平面A1B1C1D1,

∴EM∥平面A1B1C1D1.                                                      

(2)由(1)EM∥平面A1B1C1D1,EM平面A1BMN,

平面A1BMN∩平面A1B1C1D1=A1N,

∴A1N∥EM∥FC1.

∴N为C1D1中点,过B1作B1H⊥A1N于H,连结BH,根据三垂线定理BH⊥A1N,

∴∠BHB1即为二面角B-A1N-B1的平面角.                                     

设AA1=a,则AB=2a,

∵A1B1C1D1为正方形,

∴A1N=a,

又∵△A1B1H∽△NA1D1,∴B1H=.

在Rt△BB1H中,tan∠BHB1=,

即二面角BA1NB1的正切值为.                                           1

解法二:(1)证明:建立如图所示空间直角坐标系,设AB=2a,AA1=a(a>0),则

A1(2a,0,a),B(2a,2a,0),C(0,2a,0),C1(0,2a,a).                     

∵E为A1B的中点,M为CC1的中点,

∴E(2a,a,),M(0,2a,),

∴EM∥平面A1B1C1D1.                                                   

 (2)设平面A1BM的法向量为n=(x,y,z),又=(0,2a,-a),=(-2a,0,),

由n⊥,n⊥

,

∴取n=(,,a).                                                

而平面A1B1C1D1的法向量n1=(0,0,1),设二面角为θ,

则|cosθ|=,

又二面角为锐二面角,∴cosθ=,                                        

从而tanθ=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网