题目内容
已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {
}的前n项和为( )
| 1 |
| Sn |
分析:利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 {
}的前n项和.
| 1 |
| Sn |
解答:解:∵Sn=4n+
×4=2n2+2n,
∴
=
=
(
-
).
∴数列 {
}的前n项和=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
故选A.
| n(n-1) |
| 2 |
∴
| 1 |
| Sn |
| 1 |
| 2n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴数列 {
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| n |
| 2(n+1) |
故选A.
点评:熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键.
练习册系列答案
相关题目