搜索
题目内容
函数f(x)=
+cx+d,当x=-1时取得极大值8,当x=2时有极小值-19,则a=____
,
b=____
,
c=____
,
d=____.
试题答案
相关练习册答案
答案:2,-3,-12,1
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
(2012•深圳一模)已知函数
f(x)=
1
3
x
3
+b
x
2
+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设
g(x)=x
f′(x)
, m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.
已知函数
F(x)=
1
3
a
x
3
+b
x
2
+cx(a≠0)
,F'(-1)=0.
(1)若F(x)在x=1处取得极小值-2,求函数F(x)的单调区间;
(2)令f(x)=F'(x),若f′(x)>0的解集为A,且满足A∪(0,1)=(0,+∞),求
c
a
的取值范围.
设函数
f(x)=
a
3
x
3
+b
x
2
+cx(a,b,c∈R,a≠0)
.
(1)若函数f(x)为奇函数,求b的值;
(2)在(1)的条件下,若a=-3,函数f(x)在[-2,2]上的值域为[-2,2],求f(x)的零点;
(3)若不等式axf'(x)≤f(x)+1恒成立,求a+b+c的取值范围.
(2012•蓝山县模拟)设函数
f(x)=
1
3
a
x
3
+bx+cx(a≠0)
,已知a<b<c,且
0≤
b
a
<1
,曲线y=f(x)在x=1处取极值.
(Ⅰ)如果函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(Ⅱ)如果当x≥k(k是与a,b,c无关的常数)时,恒有f(x)+a<0,求实数k的最小值.
设函数
f(x)=
1
3
a
x
3
+
1
2
b
x
2
+cx(a,b,c∈R)
,在点(1,f(1))处的切线斜率为
-
a
2
,且a>2c>b.
(I)判断a,b的符号;
(II)证明:函数f(x)在区间(0,2)内至少有一个极值点
(III如果函数f(x)的单调递减区间为[m,n],求n-m的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案