ÌâÄ¿ÄÚÈÝ
ÒÑÖªÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
£¬0)£¬ÀëÐÄÂÊe=
£¬M£¬NÊÇÍÖÔ²Éϵ͝µã£®
£¨¢ñ£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©É趯µãPÂú×㣺
=
+2
£¬Ö±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
£¬ÎÊ£ºÊÇ·ñ´æÔÚ¶¨µãF1£¬F2£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£¿£¬Èô´æÔÚ£¬Çó³öF1£¬F2µÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ó£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔµã¶Ô³Æ£¬µãMÔÚxÖáÉϵÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÉèÖ±ÏßMN¡¢MBµÄбÂÊ·Ö±ðΪkMN¡¢kMB£¬ÇókMN•kMBµÄÖµ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| ||
| 2 |
£¨¢ñ£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©É趯µãPÂú×㣺
| OP |
| OM |
| ON |
| 1 |
| 2 |
£¨¢ó£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔµã¶Ô³Æ£¬µãMÔÚxÖáÉϵÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÉèÖ±ÏßMN¡¢MBµÄбÂÊ·Ö±ðΪkMN¡¢kMB£¬ÇókMN•kMBµÄÖµ£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
£¬0)£¬ÀëÐÄÂÊe=
£¬¿ÉµÃc=
£¬a=2£¬ÀûÓÃb=
=
£¬¿ÉÇóµÃÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©½«
=
+2
×ø±ê»¯£¬ÀûÓÃÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
£¬¿É¼ÆËãx2+2y2=20£¬´Ó¶ø¿ÉÖª´æÔÚ¶¨µãF1(-
£¬0)£¬F2(
£¬0)£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£®
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬£¬Ð´³öÖ±ÏßNA·½³ÌΪºÍÍÖÔ²ÁªÁ¢£¬¿ÉÇóµÃBµÄ×ø±ê£¨x£¬y£©£¬½ø¶ø¿É¼ÆËãkMB£¬kMN£¬¼´¿ÉÇóµÃkMN•kMBµÄÖµ£®
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| ||
| 2 |
| 2 |
| a2-c2 |
| 2 |
£¨¢ò£©½«
| OP |
| OM |
| ON |
| 1 |
| 2 |
| 10 |
| 10 |
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬£¬Ð´³öÖ±ÏßNA·½³ÌΪºÍÍÖÔ²ÁªÁ¢£¬¿ÉÇóµÃBµÄ×ø±ê£¨x£¬y£©£¬½ø¶ø¿É¼ÆËãkMB£¬kMN£¬¼´¿ÉÇóµÃkMN•kMBµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©¡ßÍÖÔ²
+
=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
£¬0)£¬ÀëÐÄÂÊe=
£¬
¡àc=
£¬a=2
¡àb=
=
¡àÍÖÔ²±ê×¼·½³ÌΪ
+
=1£»
£¨¢ò£©ÉèP£¨x£¬y£©£¬M£¨x1£¬y1 £©¡¢N£¨x2£¬y2 £©£®
¡ß
=
+2
£¬
¡à£¨x£¬y£©=£¨x1+2x2£¬y1+2y2£©£¬¡àx=x1+2x2£¬y=y1+2y2£¬
¡ßM¡¢NÊÇÍÖÔ²Éϵĵ㣬¡à
+
=1£¬
+
=1£®
¡àx2+2y2=£¨x1+2x2£©2+2 £¨y1+2y2£©2=£¨x12+2y12 £©+4£¨x22+2y22 £©+4£¨x1x2+2y1y2£©=20+4£¨x1x2+2y1y2£©£®
¡ßÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
£¬
¡à
=-
¡àx1x2+2y1y2=0£¬
¡àx2+2y2=20£¬¼´
+
=1
¡à´æÔÚ¶¨µãF1(-
£¬0)£¬F2(
£¬0)£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£®
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬
Ö±ÏßNA·½³ÌΪy=
(x-x0)ºÍÍÖÔ²ÁªÁ¢
£¬ÏûÈ¥yÕûÀíµÃ
(1+
)x2-
x-4+
=0
ÉèB£¨x£¬y£©£¬Ôò-x0+x=
£¬¡ày-y0=
¡à
=-
£¬¡àkMB=-
¡ßkMN=
£¬
¡àkMN•kMB=-1£®
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| ||
| 2 |
¡àc=
| 2 |
¡àb=
| a2-c2 |
| 2 |
¡àÍÖÔ²±ê×¼·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 2 |
£¨¢ò£©ÉèP£¨x£¬y£©£¬M£¨x1£¬y1 £©¡¢N£¨x2£¬y2 £©£®
¡ß
| OP |
| OM |
| ON |
¡à£¨x£¬y£©=£¨x1+2x2£¬y1+2y2£©£¬¡àx=x1+2x2£¬y=y1+2y2£¬
¡ßM¡¢NÊÇÍÖÔ²Éϵĵ㣬¡à
| x12 |
| 4 |
| y12 |
| 2 |
| x22 |
| 4 |
| y22 |
| 2 |
¡àx2+2y2=£¨x1+2x2£©2+2 £¨y1+2y2£©2=£¨x12+2y12 £©+4£¨x22+2y22 £©+4£¨x1x2+2y1y2£©=20+4£¨x1x2+2y1y2£©£®
¡ßÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
| 1 |
| 2 |
¡à
| y1y2 |
| x1x2 |
| 1 |
| 2 |
¡àx1x2+2y1y2=0£¬
¡àx2+2y2=20£¬¼´
| x2 |
| 20 |
| y2 |
| 10 |
¡à´æÔÚ¶¨µãF1(-
| 10 |
| 10 |
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬
Ö±ÏßNA·½³ÌΪy=
| y0 |
| 2x0 |
|
(1+
| y02 |
| 2x02 |
| y02 |
| x0 |
| y02 |
| 2 |
ÉèB£¨x£¬y£©£¬Ôò-x0+x=
| 2x0y02 |
| 2x02+ y02 |
| -2y0x02 |
| 2x02+y02 |
¡à
| y-y0 |
| x-x0 |
| x0 |
| y0 |
| x0 |
| y0 |
¡ßkMN=
| y0 |
| x0 |
¡àkMN•kMB=-1£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²é´æÔÚÐÔÎÊÌâµÄ̽Ç󣬿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúÔËËã¡¢·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿