题目内容

已知f(x)=m(x-2m)(xm+3),g(x)=2x-2.若同时满足条件:

①∀x∈R,f(x)<0或g(x)<0;

②∃x∈(-∞,-4),f(x)g(x)<0,

m的取值范围是________.

解析 当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).

答案 (-4,-2)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网