题目内容

如图12,已知PA切⊙OA,割线PBC交⊙O于BC,PDABD,延长PDAO的延长线于E,连结CE并延长交⊙OF,连结AF.

图12

(1)求证:PD·PE =PB·PC;

(2)求证:PEAF;

(3)连结AC,若AEAC=1∶,AB=2,求EF的长.

思路分析:(1)证明等积式往往考虑相似三角形,但△PBD与△PEC不相似,因此要用PA2=PB·PC进行等积变换.?

(2)要证明PEAF,只需证明同位角∠PEC和∠F相等.?

(3)首先找出EFAB的关系,同时注意到AEAC=1∶,因此,先设法求出EFAB,这可由相似三角形得出.

(1)证明:∵PA切⊙OA,?

PA2=PB·PC,PAAE.?

AD⊥PE,∴△APE∽△DPA.?

PA2=PD·PE.∴PD·PE =PB·PC.

(2)证明:∵PD·PE =PB·PC,∴=.?

又∠EPC =∠BPD,∴△BPD∽△EPC.?

∴∠PBD =∠PEC.又∵∠PBD =∠F,?

∴∠PEC =∠F.∴PEAF.

(3)解:∵PA切⊙OA,∴∠BAP =∠ACP.?

∵∠APB =∠CPA,∴△APB∽△CPA.?

=.?

又∵∠ABP =∠F,∠BAP =∠AEP =∠FAE,?

∴△AEF∽△APB.∴=.?

=.∴= =.?

AB =2,∴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网