题目内容
如图12,已知PA切⊙O于A,割线PBC交⊙O于B、C,PD⊥AB于D,延长PD交AO的延长线于E,连结CE并延长交⊙O于F,连结AF.![]()
图12
(1)求证:PD·PE =PB·PC;
(2)求证:PE∥AF;
(3)连结AC,若AE∶AC=1∶
,AB=2,求EF的长.
思路分析:(1)证明等积式往往考虑相似三角形,但△PBD与△PEC不相似,因此要用PA2=PB·PC进行等积变换.?
(2)要证明PE∥AF,只需证明同位角∠PEC和∠F相等.?
(3)首先找出EF与AB的关系,同时注意到AE∶AC=1∶
,因此,先设法求出EF∶AB,这可由相似三角形得出.
(1)证明:∵PA切⊙O于A,?
∴PA2=PB·PC,PA⊥AE.?
又AD⊥PE,∴△APE∽△DPA.?
∴PA2=PD·PE.∴PD·PE =PB·PC.
(2)证明:∵PD·PE =PB·PC,∴
=
.?
又∠EPC =∠BPD,∴△BPD∽△EPC.?
∴∠PBD =∠PEC.又∵∠PBD =∠F,?
∴∠PEC =∠F.∴PE∥AF.
(3)解:∵PA切⊙O于A,∴∠BAP =∠ACP.?
∵∠APB =∠CPA,∴△APB∽△CPA.?
∴
=
.?
又∵∠ABP =∠F,∠BAP =∠AEP =∠FAE,?
∴△AEF∽△APB.∴
=
.?
∴
=
.∴
=
=
.?
又AB =2,∴
.
练习册系列答案
相关题目