题目内容
已知数列{an}的各项为正数,其前n项和Sn满足Sn=(
)2,
(I)求an与an-1(n≥2)之间的关系式,并求{an}的通项公式;
(II)求证
+
+…+
<2.
| an+1 |
| 2 |
(I)求an与an-1(n≥2)之间的关系式,并求{an}的通项公式;
(II)求证
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
分析:(I)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2,所以{an}是公差d=2的等差数列,由此能求出an与an-1(n≥2)之间的关系式,并能求了{an}的通项公式.
(II)由Sn=n2,知
+
+…+
=
+
+…+
,由
<
=
-
,n≥2,能够证明
+
+…+
<2.
(II)由Sn=n2,知
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:解:(I)∵4Sn=(an+1)2①,
而4Sn-1=(an-1+1)2②,
①-②得4an=an2+2an+1-an-12-2an-1-1,
∴
-
-2(an+an-1)=0⇒(an+an-1)(an-an-1-2)=0,
∵an>0,
∴an-
=2(n≥2),
∴{an}是公差d=2的等差数列,
∵4a1=(a1+1)2,
∴a1=1,
∴an=2n-1.
(II)∵Sn=n2,
∴
=
,
∴
+
+…+
=
+
+…+
,
∵
<
=
-
,n≥2,
∴
+
+…+
=
+
+…+
<1+(1-
)+(
-
)+…+(
-
)
=2-
<2.
故
+
+…+
<2.
而4Sn-1=(an-1+1)2②,
①-②得4an=an2+2an+1-an-12-2an-1-1,
∴
| a | 2 n |
| a | 2 n-1 |
∵an>0,
∴an-
| a | n-1 |
∴{an}是公差d=2的等差数列,
∵4a1=(a1+1)2,
∴a1=1,
∴an=2n-1.
(II)∵Sn=n2,
∴
| 1 |
| Sn |
| 1 |
| n2 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
∵
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
<1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=2-
| 1 |
| n |
故
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
点评:本题考查数列与不等式的综合运用,综合性强,难度大,是高考的重点.解题时要认真审题,仔细挖掘题设中的隐含条件,注意放缩法和裂项求和法的合理运用.
练习册系列答案
相关题目