题目内容
已知函数f(x)=1-2sin2(x+
)+2sin(x+
)cos(x+
).求:
(Ⅰ)函数f(x)的最小正周期;
(Ⅱ)函数f(x)的单调增区间.
| π |
| 8 |
| π |
| 8 |
| π |
| 8 |
(Ⅰ)函数f(x)的最小正周期;
(Ⅱ)函数f(x)的单调增区间.
f(x)=cos(2x+
)+sin(2x+
)=
sin(2x+
+
)=
sin(2x+
)=
cos2x.
(Ⅰ)函数f(x)的最小正周期是T=
=π;
(Ⅱ)当2kπ-π≤2x≤2kπ,即kπ-
≤x≤kπ(k∈Z)时,
函数f(x)=
cos2x是增函数,
故函数f(x)的单调递增区间是[kπ-
,kπ](k∈Z).
| π |
| 4 |
| π |
| 4 |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 2 |
| π |
| 2 |
| 2 |
(Ⅰ)函数f(x)的最小正周期是T=
| 2π |
| 2 |
(Ⅱ)当2kπ-π≤2x≤2kπ,即kπ-
| π |
| 2 |
函数f(x)=
| 2 |
故函数f(x)的单调递增区间是[kπ-
| π |
| 2 |
练习册系列答案
相关题目