题目内容
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
| 组别 | 候车时间 | 人数 |
| 一 | [0,5) | 2 |
| 二 | [5,10) | 6 |
| 三 | [10,15) | 4 |
| 四 | [15,20) | 2 |
| 五 | [20,25] | 1 |
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
(Ⅰ)由图表得:2.5×
+7.5×
+12.5×
+17.5×
+22.5×
=10.5,
所以这15名乘客的平均候车时间为10.5分钟.
(Ⅱ)由图表得:这15名乘客中候车时间少于10分钟的人数为8,
所以,这60名乘客中候车时间少于10分钟的人数大约等于60×
=32.
(Ⅲ)设第三组的乘客为a,b,c,d,第四组的乘客为e,f,“抽到的两个人恰好来自不同的组”为事件A.
所得基本事件共有15种,即(ac),(ab),(ad),(ae),(af),(bc),(bd),(be),(bf),(cd),(ce),(cf),(de),(df),(ef),
抽到的两人恰好来自不同组的事件共8种,分别是(ae),(af),(be),(bf),(ce),(cf),(df),(ef).
其中事件A包含基本事件8种,由古典概型可得P(A)=
,即所求概率等于
.
| 2 |
| 15 |
| 6 |
| 15 |
| 4 |
| 15 |
| 2 |
| 15 |
| 1 |
| 15 |
所以这15名乘客的平均候车时间为10.5分钟.
(Ⅱ)由图表得:这15名乘客中候车时间少于10分钟的人数为8,
所以,这60名乘客中候车时间少于10分钟的人数大约等于60×
| 8 |
| 15 |
(Ⅲ)设第三组的乘客为a,b,c,d,第四组的乘客为e,f,“抽到的两个人恰好来自不同的组”为事件A.
所得基本事件共有15种,即(ac),(ab),(ad),(ae),(af),(bc),(bd),(be),(bf),(cd),(ce),(cf),(de),(df),(ef),
抽到的两人恰好来自不同组的事件共8种,分别是(ae),(af),(be),(bf),(ce),(cf),(df),(ef).
其中事件A包含基本事件8种,由古典概型可得P(A)=
| 8 |
| 15 |
| 8 |
| 15 |
练习册系列答案
相关题目
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
| 组别 | 候车时间 |
|
|
| [0,5) | 2 |
| 二 | [5,10) | 6 |
| 三 | [10,15) | 4 |
| 四 | [15,20) | 2 |
| 五 | [20,25] | 1 |
(1)求这15名乘客的平
均候车时间.
(2)估计这6
0名乘客中候车时间少于10分钟的人数.
(3)若从上表第三和第四组的6人中随机抽取2人进行问卷调查,求抽到的两人恰好来自不同组的概率.
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
|
组别 |
候车时间 |
人数 |
|
一 |
|
2 |
|
二 |
|
6 |
|
三 |
|
4 |
|
四 |
|
2 |
|
五 |
|
1 |
为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(Ⅰ)求这15名乘客的平均候车时间;
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
| 组别 | 候车时间 | 人数 |
| 一 | [0,5) | 2 |
| 二 | [5,10) | 6 |
| 三 | [10,15) | 4 |
| 四 | [15,20) | 2 |
| 五 | [20,25] | 1 |
(Ⅱ)估计这60名乘客中候车时间少于10分钟的人数;
(Ⅲ)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.