题目内容
已知椭圆C:
+
=1(a>b>0)的离心率为
,椭圆短轴长为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
,求斜率k的值;
②若点M(-
,0),求证:
•
为定值.
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
2
| ||
| 3 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为-
| 1 |
| 2 |
②若点M(-
| 7 |
| 3 |
| MA |
| MB |
分析:(Ⅰ)由
=
,2b=
及a2=b2+c2联立即可解得a2,b2值;
(Ⅱ)(1)将直线方程与椭圆方程联立消掉y得x的一元二次方程,由韦达定理得x1+x2=-
,再由AB中点的横坐标为-
,可得关于k的方程,解出即可;
(2)利用向量数量积的坐标运算及韦达定理即可求得
•
为定值.
| c |
| a |
| ||
| 3 |
2
| ||
| 3 |
(Ⅱ)(1)将直线方程与椭圆方程联立消掉y得x的一元二次方程,由韦达定理得x1+x2=-
| 6k2 |
| 3k2+1 |
| 1 |
| 2 |
(2)利用向量数量积的坐标运算及韦达定理即可求得
| MA |
| MB |
解答:解:(Ⅰ)因为
+
=1(a>b>0)满足a2=b2+c2①,
由
=
②,2b=
③.联立①②③,
解得a2=5,b2=
,
所以椭圆方程为
+
=1.
(Ⅱ)(1)将y=k(x+1)代入
+
=1中,得(1+3k2)x2+6k2x+3k2-5=0,
△=36k4-4(3k2+1)(3k2-5)=48k2+20>0,x1+x2=-
,
因为AB中点的横坐标为-
,所以-
=-
,解得k=±
,
(2)由(1)知x1+x2=-
,x1x2=
,
所以
•
=(x1+
,y1)(x2+
,y2)=(x1+
)(x2+
)+y1y2
=(x1+
)(x2+
)+k2(x1+1)(x2+1)
=(1+k2)x1x2+(
+k2)(x1+x2)+
+k2
=(1+k2)
+(
+k2)(-
)+
+k2=
;
| x2 |
| a2 |
| y2 |
| b2 |
由
| c |
| a |
| ||
| 3 |
2
| ||
| 3 |
解得a2=5,b2=
| 5 |
| 3 |
所以椭圆方程为
| x2 |
| 5 |
| y2 | ||
|
(Ⅱ)(1)将y=k(x+1)代入
| x2 |
| 5 |
| y2 | ||
|
△=36k4-4(3k2+1)(3k2-5)=48k2+20>0,x1+x2=-
| 6k2 |
| 3k2+1 |
因为AB中点的横坐标为-
| 1 |
| 2 |
| 6k2 |
| 3k2+1 |
| 1 |
| 2 |
| ||
| 3 |
(2)由(1)知x1+x2=-
| 6k2 |
| 3k2+1 |
| 3k2-5 |
| 3k2+1 |
所以
| MA |
| MB |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
=(x1+
| 7 |
| 3 |
| 7 |
| 3 |
=(1+k2)x1x2+(
| 7 |
| 3 |
| 49 |
| 9 |
=(1+k2)
| 3k2-5 |
| 3k2+1 |
| 7 |
| 3 |
| 6k2 |
| 3k2+1 |
| 49 |
| 9 |
| 4 |
| 9 |
点评:本题考查直线与椭圆的位置关系及向量的数量积运算,考查学生的运算变形能力,考查学生分析解决问题的能力.
练习册系列答案
相关题目