题目内容
已知等比数列{an}的前四项为1,
,
,
.
(1)求a12+a22+a32+…+a102的值;
(2)设bn=an(an+1),Sn=b1+b2+…+bn,求Sn.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 8 |
(1)求a12+a22+a32+…+a102的值;
(2)设bn=an(an+1),Sn=b1+b2+…+bn,求Sn.
分析:(1)由已知,注意到数列{an2}也是等比数列,直接依照公式计算.
(2)bn=an(an+1)=an2+an,将Sn分组,化为两个等比数列求和.
(2)bn=an(an+1)=an2+an,将Sn分组,化为两个等比数列求和.
解答:解:∵a1=1,a2=
,∴数列{an}的公比为
,
∴an=
,∴an2=(
)2=
=
,∴数列{an2}也是等比数列,公比为
∴a12+a22+a32+…+a102=1+
+
+…+
=
=
-
)9
(2)∵bn=an
=
=
+
∴Sn=
+
=
-
)n-1+2-
)n-1=
-
)n-1-
)n-1
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 4n-1 |
| an+12 |
| an2 |
| 1 |
| 4 |
| 1 |
| 4 |
∴a12+a22+a32+…+a102=1+
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 49 |
1-
| ||||||
1-
|
| 4 |
| 3 |
| 1 |
| 3 |
|
(2)∵bn=an
|
| 1 |
| 2n-1 |
|
| 1 |
| 22n-2 |
| 1 |
| 2n-1 |
∴Sn=
1-(
| ||
1-
|
1-
| ||||||
1-
|
| 4 |
| 3 |
| 1 |
| 3 |
|
|
| 10 |
| 3 |
| 1 |
| 3 |
|
|
点评:本题考查了等比数列的定义,求和公式,以及分组法数列求和.同时考查计算能力.
练习册系列答案
相关题目