题目内容
(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,
]上的单调性.
| π |
| 4 |
(1)求ω的值;
(2)讨论f(x)在区间[0,
| π |
| 2 |
分析:(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;
(2)由于x是[0,
]范围内的角,得到2x+
的范围,然后通过正弦函数的单调性求出f(x)在区间[0,
]上的单调性.
(2)由于x是[0,
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
解答:解:(1)f(x)=4cosωxsin(ωx+
)=2
sinωx•cosωx+2
cos2ωx
=
(sin2ωx+cos2ωx)+
=2sin(2ωx+
)+
,
所以 T=
=π,∴ω=1.
(2)由(1)知,f(x)=2sin(2x+
)+
,
因为0≤x≤
,所以
≤2x+
≤
,
当
≤2x+
≤
时,即0≤x≤
时,f(x)是增函数,
当
≤2x+
≤
时,即
≤x≤
时,f(x)是减函数,
所以f(x)在区间[0,
]上单调增,在区间[
,
]上单调减.
| π |
| 4 |
| 2 |
| 2 |
=
| 2 |
| 2 |
| π |
| 4 |
| 2 |
所以 T=
| 2π |
| 2ω |
(2)由(1)知,f(x)=2sin(2x+
| π |
| 4 |
| 2 |
因为0≤x≤
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 5π |
| 4 |
当
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
| π |
| 8 |
当
| π |
| 2 |
| π |
| 4 |
| 5π |
| 4 |
| π |
| 8 |
| π |
| 2 |
所以f(x)在区间[0,
| π |
| 8 |
| π |
| 8 |
| π |
| 2 |
点评:本题考查三角函数的化简求值,恒等关系的应用,注意三角函数值的变换,考查计算能力,常考题型.
练习册系列答案
相关题目