题目内容
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.
分析:(1)因为同弧所对的圆周角相等,所以有∠AEC=∠ABC,又∠AEC=∠ODB,所以∠ABC=∠ODB,OD⊥弦BC,即∠ABC+∠BOD=90°所以则有∠ODB+∠BOD=90°,即BD垂直与AB,所以BD为切线.
(2)连接AC,由于AB为直径,所以AC和BC垂直,又有(1)知∠ABC=∠ODB,所以有△ACB∽△OBD,而AC可有勾股定理求出,所以根据对应线段成比例求出BD.
(2)连接AC,由于AB为直径,所以AC和BC垂直,又有(1)知∠ABC=∠ODB,所以有△ACB∽△OBD,而AC可有勾股定理求出,所以根据对应线段成比例求出BD.
解答:
证明:(1)直线BD和⊙O相切(1分)
∵∠AEC=∠ODB,∠AEC=∠ABC
∴∠ABC=∠ODB(2分)
∵OD⊥BC
∴∠DBC+∠ODB=90°(3分)
∴∠DBC+∠ABC=90°
∴∠DBO=90°(4分)
∴直线BD和⊙O相切.(5分)
(2)连接AC
∵AB是直径
∴∠ACB=90°(6分)
在Rt△ABC中,AB=10,BC=8
∴AC=
=6
∵直径AB=10
∴OB=5.(7分)
由(1),BD和⊙O相切
∴∠OBD=90°(8分)
∴∠ACB=∠OBD=90°
由(1)得∠ABC=∠ODB,
∴△ABC∽△ODB(9分)
∴
=
∴
=
,解得BD=
.(10分)
∵∠AEC=∠ODB,∠AEC=∠ABC
∴∠ABC=∠ODB(2分)
∵OD⊥BC
∴∠DBC+∠ODB=90°(3分)
∴∠DBC+∠ABC=90°
∴∠DBO=90°(4分)
∴直线BD和⊙O相切.(5分)
(2)连接AC
∵AB是直径
∴∠ACB=90°(6分)
在Rt△ABC中,AB=10,BC=8
∴AC=
| AB2-BC2 |
∵直径AB=10
∴OB=5.(7分)
由(1),BD和⊙O相切
∴∠OBD=90°(8分)
∴∠ACB=∠OBD=90°
由(1)得∠ABC=∠ODB,
∴△ABC∽△ODB(9分)
∴
| AC |
| OB |
| BC |
| BD |
∴
| 6 |
| 5 |
| 8 |
| BD |
| 20 |
| 3 |
点评:此题主要考查了切线的判定以及相似三角形的判定的综合运用.属于基础题.
练习册系列答案
相关题目