ÌâÄ¿ÄÚÈÝ
¸ø³öº¯Êý·â±ÕµÄ¶¨Ò壺Èô¶ÔÓÚ¶¨ÒåÓòDÄÚµÄÈÎÒâÒ»¸ö×Ô±äÁ¿x0£¬¶¼Óк¯ÊýÖµf£¨x0£©¡ÊD£¬Ôò³Æº¯Êýy=f£¨x£©ÔÚDÉÏ·â±Õ£®
£¨1£©Èô¶¨ÒåÓòD1=£¨0£¬1£©£¬ÅжÏÏÂÁк¯ÊýÖÐÄÄЩÔÚD1ÉÏ·â±Õ£¨Ð´³öÍÆÀí¹ý³Ì£©£ºf1£¨x£©=2x-1£¬f2£¨x£©=-
x2-
x+1£¬f3£¨x£©=2x-1£»
£¨2£©Èô¶¨ÒåÓòD2=£¨1£¬2£©£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃº¯Êýf£¨x£©=
ÔÚD2ÉÏ·â±Õ£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£¬²¢¸ø³öÖ¤Ã÷£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Èô¶¨ÒåÓòD1=£¨0£¬1£©£¬ÅжÏÏÂÁк¯ÊýÖÐÄÄЩÔÚD1ÉÏ·â±Õ£¨Ð´³öÍÆÀí¹ý³Ì£©£ºf1£¨x£©=2x-1£¬f2£¨x£©=-
| 1 |
| 2 |
| 1 |
| 2 |
£¨2£©Èô¶¨ÒåÓòD2=£¨1£¬2£©£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃº¯Êýf£¨x£©=
| 5x-a |
| x+2 |
·ÖÎö£º£¨1£©¸ù¾Ý¶¨ÒåÓò£¬ÇóµÃº¯ÊýµÄ¶¨ÒåÓò£¬ÀûÓÃж¨Ò壬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©·ÖÀàÌÖÂÛ£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬½¨Á¢²»µÈʽ×飬¿ÉÇóaµÄÖµ£®
£¨2£©·ÖÀàÌÖÂÛ£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬½¨Á¢²»µÈʽ×飬¿ÉÇóaµÄÖµ£®
½â´ð£º½â£º£¨1£©¶ÔÓÚ¶¨ÒåÓòDÄÚµÄÈÎÒâÒ»¸ö×Ô±äÁ¿x0£¬¶¼Óк¯ÊýÖµf1£¨x0£©¡Ê£¨-1£¬1£©∉D1£¬
¹Êº¯Êýf1£¨x£©=2x-1ÔÚD1Éϲ»·â±Õ£»
ͬÀí£¬f2£¨x£©=-
x2-
x+1=-
(x+
)2+
¡Ê£¨0£¬1£©£»f3£¨x£©=2x-1¡Ê£¨0£¬1£©£¬¹ÊÔÚD1ÉÏ·â±Õ£»
£¨2£©f£¨x£©=
£¬¶Ô³ÆÖÐÐÄΪ£¨-2£¬5£©
µ±a+10£¾0ʱ£¬º¯Êýf£¨x£©=
ÔÚD2ÉÏΪÔöº¯Êý£¬Ö»Ðè
£¬¡àa=2
µ±a+10£¼0ʱ£¬º¯Êýf£¨x£©=
ÔÚD2ÉÏΪ¼õº¯Êý£¬Ö»Ðè
£¬¡àa¡Ê∅
×ÛÉÏ£¬ËùÇóaµÄÖµµÈÓÚ2£®
¹Êº¯Êýf1£¨x£©=2x-1ÔÚD1Éϲ»·â±Õ£»
ͬÀí£¬f2£¨x£©=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 8 |
£¨2£©f£¨x£©=
| 5x-a |
| x+2 |
µ±a+10£¾0ʱ£¬º¯Êýf£¨x£©=
| 5x-a |
| x+2 |
|
µ±a+10£¼0ʱ£¬º¯Êýf£¨x£©=
| 5x-a |
| x+2 |
|
×ÛÉÏ£¬ËùÇóaµÄÖµµÈÓÚ2£®
µãÆÀ£º±¾ÌâÒÔж¨Ò庯ÊýÎªÔØÌ壬¿¼²éж¨Ò壬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¹Ø¼üÊǶÔж¨ÒåµÄÀí½â£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿