题目内容

定义在R上的函数y=f(x)满足下列两个条件:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
分析:由已知中:(1)对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);(2)y=f(x+2)的图象关于y轴对称.我们可以判断出函数y=f(x)在区间(2,4]上为减函数,且f(
1
2
)=f(
7
2
)
,进而得到答案.
解答:解:∵对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);
∴函数y=f(x)在区间[0,2)上为增函数
又∵y=f(x+2)的图象关于y轴对称
∴函数y=f(x)的图象关于直线x=2对称
即函数y=f(x)在区间(2,4]上为减函数,且f(
1
2
)=f(
7
2
)

f(
7
2
)<f(3)<f(
5
2
)

f(
1
2
)<f(3)<f(
5
2
)

故选B
点评:本题是函数奇偶性与单调性的综合,其中根据已知条件确定出函数在区间(2,4]上的单调性,是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网