题目内容
在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离.
解析
在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线的参数方程为 (t为参数),判断直线和圆C的位置关系.
在直角坐标系xOy 中,曲线C1的参数方程为(为参数)M是C1上的动点,P点满足,P点的轨迹为曲线C2(1)求C2的方程(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.
圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过圆O1、圆O2交点的直线的直角坐标方程.
在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.(1)写出直线的普通方程与圆的直角坐标方程;(2)由直线上的点向圆引切线,求切线长的最小值.
已知椭圆C的极坐标方程为ρ2=,点F1,F2为其左、右焦点,直线l的参数方程为(t为参数,t∈R).(1)求直线l和曲线C的普通方程.(2)求点F1,F2到直线l的距离之和.
已知直线的参数方程为(t为参数),曲线C的参数方程为(为参数).(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线的位置关系;(2)设点Q是曲线C上的一个动点,求点Q到直线的距离的最小值与最大值.
求极坐标方程分别为ρ=cosθ与ρ=sinθ的两个圆的圆心距.
已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,求|CP|.