题目内容
已知椭圆,则以点为中点的弦所在直线方程为__________________。
已知椭圆方程为(),F(-c,0)和F(c,0)分别是椭圆的左 右焦点.
①若P是椭圆上的动点,延长到M,使=,则M的轨迹是圆;
②若P是椭圆上的动点,则;
③以焦点半径为直径的圆必与以长轴为直径的圆内切;
④若在椭圆上,则过的椭圆的切线方程是;
⑤点P为椭圆上任意一点,则椭圆的焦点角形的面积为.
以上说法中,正确的有
已知椭圆:(),其焦距为,若(),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆:()中,、、成等比数列.
(2)黄金椭圆:()的右焦点为,为椭圆上的
任意一点.是否存在过点、的直线,使与轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆:()的左、右焦点分别是、,以、、、为顶点的菱形的内切圆过焦点、.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
(3)在黄金椭圆中有真命题:已知黄金椭圆:()的左、右
焦点分别是、,以、、、为顶点的菱形的内切圆过焦点、.
试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.