题目内容
已知函数f(x)的定义域为[0,1],且同时满足:
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=-
(an-3),n∈N*.求证:f(a1)+f(a2)+f(a3)+…+f(an)≤
+2n-
.
(1)对任意x∈[0,1],总有f(x)≥2;
(2)f(1)=3
(3)若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2.
( I)求f(0)的值;
( II)求f(x)的最大值;
( III)设数列{an}的前n项和为Sn,且满足Sn=-
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2×3n-1 |
分析:(Ⅰ)取特值x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2)-2后可求得f(0)≤2,又对任意x∈[0,1],总有f(x)≥2,由此可得f(0)=2;
(Ⅱ)在[0,1]内任取两个值x1,x2,规定x1<x2后,由f(x1+x2)≥f(x1)+f(x2)-2推出f(x2)≥f(x1),由此可得f(x)的最大值为3;
(Ⅲ)由数列{an}的前n项和求出数列的通项公式an=
,把f(an)=f(
)转化为f(
+
+
),然后代入f(x1+x2)≥f(x1)+f(x2)-2,变形整理后得即f(an+1)≤
f(an)+
,循环放大得到f(an)≤2+
,代入求证的不等式左边化简即可.
(Ⅱ)在[0,1]内任取两个值x1,x2,规定x1<x2后,由f(x1+x2)≥f(x1)+f(x2)-2推出f(x2)≥f(x1),由此可得f(x)的最大值为3;
(Ⅲ)由数列{an}的前n项和求出数列的通项公式an=
| 1 |
| 3n-1 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3n-1 |
解答:(I)解:令x1=x2=0,由f(x1+x2)≥f(x1)+f(x2)-2,则f(0)≥2f(0)-2,∴f(0)≤2.
由对任意x∈[0,1],总有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)对任意x1,x2∈[0,1]且x1<x2,则0<x2-x1≤1,∴f(x2-x1)≥2,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-2≥f(x1),
∴fmax(x)=f(1)=3;
(III)∵Sn=-
(an-3)(n∈N*)①,
∴Sn-1=-
(an-1-3)(n≥2)②,
①-②得:an=
an-1(n≥2),
由Sn=-
(an-3),得:a1=-
(a1-3),解得a1=1.
∵a1=1≠0,∴
=
(n≥2),
∴an=a1qn-1=
.
∴f(an)=f(
)=f(
+
+
)≥f(
)+f(
)-2≥3f(
)-4
∴f(
)≤
f(
)+
,即f(an+1)≤
f(an)+
.
所以f(an)≤
f(an-1)+
≤
[
f(an-2)+
]+
≤…≤
f(a1)+
+
+…+
=
f(1)+
+
+…+
=
+4×
=
+2.
故f(an)≤2+
∴f(a1)+f(a2)+…+f(an)≤2n+
=2n+
-
.
即原不等式式成立.
由对任意x∈[0,1],总有f(x)≥2,∴f(0)≥2,故f(0)=2;
(II)对任意x1,x2∈[0,1]且x1<x2,则0<x2-x1≤1,∴f(x2-x1)≥2,
∴f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)-2≥f(x1),
∴fmax(x)=f(1)=3;
(III)∵Sn=-
| 1 |
| 2 |
∴Sn-1=-
| 1 |
| 2 |
①-②得:an=
| 1 |
| 3 |
由Sn=-
| 1 |
| 2 |
| 1 |
| 2 |
∵a1=1≠0,∴
| an |
| an-1 |
| 1 |
| 3 |
∴an=a1qn-1=
| 1 |
| 3n-1 |
∴f(an)=f(
| 1 |
| 3n-1 |
| 1 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
| 2 |
| 3n |
| 1 |
| 3n |
| 1 |
| 3n |
∴f(
| 1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 3n-1 |
| 4 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
所以f(an)≤
| 1 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
≤…≤
| 1 |
| 3n-1 |
| 4 |
| 3n-1 |
| 4 |
| 3n-2 |
| 4 |
| 3 |
=
| 1 |
| 3n-1 |
| 4 |
| 3n-1 |
| 4 |
| 3n-2 |
| 4 |
| 3 |
=
| 3 |
| 3n-1 |
| ||||
1-
|
| 1 |
| 3n-1 |
故f(an)≤2+
| 1 |
| 3n-1 |
∴f(a1)+f(a2)+…+f(an)≤2n+
1-(
| ||
1-
|
| 3 |
| 2 |
| 1 |
| 2×3n-1 |
即原不等式式成立.
点评:本题考查了数列的函数特性,考查了数列的和,训练了利用放缩法求证不等式,考查了学生灵活处理问题的能力和计算能力,是难度较大的题目.
练习册系列答案
相关题目