题目内容

已知等比数列{an}中,公比q>0,若a2=4,则a1+a2+a3


  1. A.
    最小值-4
  2. B.
    最大值-4
  3. C.
    最小值12
  4. D.
    最大值12
C
分析:等比数列{an}中,由公比q>0,a2=4,知a1+a2+a3==4(q+)+4≥4×2+4=12,所以a1+a2+a3有最小值12.
解答:等比数列{an}中
∵公比q>0,a2=4,
∴a1=,a3=4q,
∴a1+a2+a3=
=4(q+)+4
≥4×2+4
=12
当且仅当q=,即q=1时取等号(因为q>0故q=-1舍去)
所以a1+a2+a3有最小值12.
故选C.
点评:本题考查等比数列的通项公式的应用,是基础题.解题时要认真审题,注意均值不等式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网