题目内容
若数列{an}满足an=qn(q>0,n∈N*),以下命题正确的是
(1){a2n}是等比数列;
(2)
是等比数列;
(3){lgan}是等差数列;
(4){lgan2}是等差数列.
- A.(1)(3)
- B.(3)(4)
- C.(1)(2)(3)(4)
- D.(2)(3)(4)
C
分析:首先根据,
=q和lg
=lgan+1-lgan=lgq.判断数列{an}为等比数列,{lgan}是等差数列,根据等比数列的性质进而判断{a2n},
,{an2}均是等比数列.根据{an2}均是等比数列,可判断{lgan2}是等差数列.
解答:∵an=qn,∴
=q,lg
=lgan+1-lgan=lgq.
∴数列{an}为等比数列,{lgan}是等差数列
∴{a2n},
均是等比数列.
∴{lgan2}也是等差数列.
故(1)(2)(3)(4)均正确.
故选C
点评:本题主要考查了等比数列的性质.若{an}是等比数列,{bn}也是等比数则{a2n},{a3n}…是等比数列,{can},c是常数,{anbn},{
}是等比数列
分析:首先根据,
解答:∵an=qn,∴
∴数列{an}为等比数列,{lgan}是等差数列
∴{a2n},
∴{lgan2}也是等差数列.
故(1)(2)(3)(4)均正确.
故选C
点评:本题主要考查了等比数列的性质.若{an}是等比数列,{bn}也是等比数则{a2n},{a3n}…是等比数列,{can},c是常数,{anbn},{
练习册系列答案
相关题目