题目内容
已知函数f(x)=| 1 |
| 2 |
| 3 |
| 2 |
(1)求数列{an}的通项公式an;
(2)令cn=
| an |
| an+1 |
| an+1 |
| an |
| 1 |
| 2 |
分析:(1)点(n,Sn)均在函数y=f(x)的图象上,则sn=
n2+
n,可得an=Sn-Sn-1=n+1,并验证a1即可;
(2)证明:由cn=
+
>2,得c1+c2+…+cn>2n;由cn=
+
=2+
-
,得c1+c2+…+cn=2n+(
-
+
-
+…+
-
)=2n+
-
<2n+
;即证.
| 1 |
| 2 |
| 3 |
| 2 |
(2)证明:由cn=
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
解答:解:(1)∵点(n,Sn)均在函数y=f(x)的图象上,
∴Sn=
n2+
n,当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=n+1,a1也适合,所以an=n+1(n∈N*).
(2)证明:∵cn=
+
=
+
>2,∴c1+c2+…+cn>2n;
又cn=
+
=2+
-
,∴c1+c2+…+cn=2n+(
-
+
-
+…+
-
)=2n+
-
<2n+
;
∴2n<c1+c2+…+cn<2n+
.
∴Sn=
| 1 |
| 2 |
| 3 |
| 2 |
当n≥2时,an=Sn-Sn-1=n+1,a1也适合,所以an=n+1(n∈N*).
(2)证明:∵cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
又cn=
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
∴2n<c1+c2+…+cn<2n+
| 1 |
| 2 |
点评:本题考查了数列与函数的综合应用问题,解题时运用了数列的前n项和求通项公式,应用基本不等式,拆项法等证明不等式成立,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|