题目内容
已知点列An(xn,0)满足:| A0An |
| A1An+1 |
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
| a |
(3)设(2)中的数列an的前n项和为Sn,试求:Sn<
| ||
2-
|
分析:(1)利用向量的数量积公式可得(xn+1)(xn+1-1)=a-1,从而可得函数的表达式;
(2)利用an=|BAn|及
=(xn-
,0),将问题转化为要使an+1<an成立,只要
-1≤2,从而可求参数的范围;
(3)利用(2)中的结论可得an<
(
-1)n,从而求和,利用1<a≤9得0<(
)n≤1,从而得证.
(2)利用an=|BAn|及
| BAn |
| a |
| a |
(3)利用(2)中的结论可得an<
| 1 |
| 2n-1 |
| a |
| ||
| 2 |
解答:解:(1)∵A0(-1,0),A1(1,0),∴
•
=(xn+1)(xn+1-1),
∴(xn+1)(xn+1-1)=a-1,∴xn+1=f(xn)=
,
∴f(x)=
.(3分)
(2)∵xn+1=f(xn)=
,a>1,∴xn>1,∴xn+1>2
∵
=(xn-
,0),∴an=|BAn|=|x n-
|.
∵an+1=|x n+1-
|=|f(xn)-
|=|
-
|=
•|xn-
|<
(
-1)•|xn-
|=
(
-1)an
∴要使an+1<an成立,只要
-1≤2,即1<a≤9
∴a∈(1,9]为所求.(6分)
(3)∵an+1<
(
-1)|xn-
|<
(
-1)2•|x n-1-
|<…<<
(
-1)n•|x 1-
|=
(
-1)n+1,
∴an<
(
-1)n(9分)
∴Sn=a1+a2+…+an<(
-1)+
(
-1)2+…+
(
-1)n=
(11分)
∵1<a≤9,∴0<
≤1,∴0<(
)n≤1(13分)
∴
<
<
∴Sn<
(14分)
| A0An |
| A1An+1 |
∴(xn+1)(xn+1-1)=a-1,∴xn+1=f(xn)=
| xn+a |
| xn+1 |
∴f(x)=
| x+a |
| x+1 |
(2)∵xn+1=f(xn)=
| xn+a |
| xn+1 |
∵
| BAn |
| a |
| a |
∵an+1=|x n+1-
| a |
| a |
| xn+a |
| xn+1 |
| a |
(
| ||
| |xn+1| |
| a |
| 1 |
| 2 |
| a |
| a |
| 1 |
| 2 |
| a |
∴要使an+1<an成立,只要
| a |
∴a∈(1,9]为所求.(6分)
(3)∵an+1<
| 1 |
| 2 |
| a |
| a |
| 1 |
| 22 |
| a |
| a |
| 1 |
| 2n |
| a |
| a |
| 1 |
| 2n |
| a |
∴an<
| 1 |
| 2n-1 |
| a |
∴Sn=a1+a2+…+an<(
| a |
| 1 |
| 2 |
| a |
| 1 |
| 2n-1 |
| a |
(
| ||||||
1-
|
(11分)
∵1<a≤9,∴0<
| ||
| 2 |
| ||
| 2 |
∴
(
| ||||||
1-
|
| ||||
1-
|
| ||
1-(
|
∴Sn<
| ||
2-
|
点评:本题主要考查了数列与向量的综合运用,是各地高考的热点,综合性较强,考查了学生对知识的综合运用和全面掌握,平常应多加训练.
练习册系列答案
相关题目