题目内容

已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a
分析:(1)利用向量的数量积公式可得(xn+1)(xn+1-1)=a-1,从而可得函数的表达式;
(2)利用an=|BAn|及
BAn
=(xn-
a
,0)
,将问题转化为要使an+1<an成立,只要
a
-1≤2
,从而可求参数的范围;
(3)利用(2)中的结论可得an
1
2n-1
(
a
-1)
n
,从而求和,利用1<a≤9得0<(
a
-1
2
)
n
≤1
,从而得证.
解答:解:(1)∵A0(-1,0),A1(1,0),∴
A0An
A1An+1
=(xn+1)(xn+1-1)

∴(xn+1)(xn+1-1)=a-1,∴xn+1=f(xn)=
xn+a
xn+1

f(x)=
x+a
x+1
.(3分)
(2)∵xn+1=f(xn)=
xn+a
xn+1
,a>1,∴xn>1,∴xn+1>2
BAn
=(xn-
a
,0)
,∴an=|BAn|=|x n-
a
|

an+1=|x n+1-
a
|=|f(xn)-
a
|
=|
xn+a
xn+1
-
a
|=
(
a
-1)
|xn+1|
•|xn-
a
|<
1
2
(
a
-1)•|xn-
a
|=
1
2
(
a
-1)an

∴要使an+1<an成立,只要
a
-1≤2
,即1<a≤9
∴a∈(1,9]为所求.(6分)
(3)∵an+1
1
2
(
a
-1)|xn-
a
|<
1
22
(
a
-1)
2
•|x n-1-
a
|<
…<
1
2n
(
a
-1)
n
•|x 1-
a
|=
1
2n
(
a
-1)
n+1

an
1
2n-1
(
a
-1)
n
(9分)
Sn=a1+a2+…+an<(
a
-1)+
1
2
(
a
-1)
2
+…+
1
2n-1
(
a
-1)
n
=
(
a
-1)[1-(
a
-1
2
)n]
1-
1
2
(
a
-1)

(11分)
∵1<a≤9,∴0<
a
-1
2
≤1
,∴0<(
a
-1
2
)n≤1
(13分)
(
a
-1)[1-(
a
-1
2
)
n
]
1-
1
2
(
a
-1)
a
-1
1-
1
2
(
a
-1)
a
-1
1-(
a
-1)

Sn
a
-1
2-
a
(14分)
点评:本题主要考查了数列与向量的综合运用,是各地高考的热点,综合性较强,考查了学生对知识的综合运用和全面掌握,平常应多加训练.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网