题目内容

14.已知α为第二象限角,β为第一象限角,sinα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$
(1)求cos2α的值;
(2)求tan(2α-β)的值.

分析 (1)原式利用二倍角的余弦函数公式化简,把sinα的值代入计算即可求出值;
(2)由题意求出cosα与sinβ的值,进而求出tanα与tanβ的值,求出tan2α的值,原式利用两角和与差的正切函数公式化简,把各自的值代入计算即可求出值.

解答 解:(1)∵sinα=$\frac{3}{5}$,
∴cos2α=1-2sin2α=1-2×$\frac{9}{25}$=$\frac{7}{25}$;
(2)∵α为第二象限角,β为第一象限角,sinα=$\frac{3}{5}$,cosβ=$\frac{\sqrt{2}}{2}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{4}{5}$,sinβ=$\frac{\sqrt{2}}{2}$,
∴tanα=-$\frac{3}{4}$,tanβ=1,tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×(-\frac{3}{4})}{1-\frac{9}{16}}$=-$\frac{24}{7}$,
则tan(2α-β)=$\frac{tan2α-tanβ}{1+tan2αtanβ}$=$\frac{-\frac{24}{7}-1}{1-\frac{24}{7}}$=$\frac{31}{17}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网