题目内容

(2012•昌平区一模)在△ABC中,
12
cos2A=cos2A-cosA

(I)求角A的大小;
(II)若a=3,sinB=2sinC,求S△ABC
分析:(I)利用条件,结合二倍角公式,即可求得角A的大小;
(II)利用正弦定理,求得b=2c,再利用余弦定理,即可求得三角形的边,从而可求三角形的面积.
解答:解:(I)由已知得:
1
2
(2cos2A-1)=cos2A-cosA
,…(2分)
cosA=
1
2
.…(4分)
∵0<A<π,∴A=
π
3
.…(6分)
(II)由
b
sinB
=
c
sinC
可得:
sinB
sinC
=
b
c
=2
…(7分)
∴b=2c…(8分)
cosA=
b2+c2-a2
2bc
=
4c2+c2-9
4c2
=
1
2
…(10分)
c=
3
,b=2
3
…(11分)
S=
1
2
bcsinA=
1
2
×2
3
×
3
×
3
2
=
3
3
2
.…(13分)
点评:本题考查二倍角公式的运用,考查正弦定理、余弦定理,考查三角形面积的计算,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网