题目内容
以椭圆
+
=1的焦点为顶点,顶点为焦点的双曲线方程是
-
=1
-
=1.
| x2 |
| 25 |
| y2 |
| 16 |
| x2 |
| 9 |
| y2 |
| 16 |
| x2 |
| 9 |
| y2 |
| 16 |
分析:椭圆
+
=1的焦点为F(±3,0),顶点为A(±5,0),由此能求出以椭圆
+
=1的焦点为顶点,顶点为焦点的双曲线方程.
| x2 |
| 25 |
| y2 |
| 16 |
| x2 |
| 25 |
| y2 |
| 16 |
解答:解:∵椭圆
+
=1的焦点为F(±3,0),顶点为A(±5,0),
∴以椭圆
+
=1的焦点为顶点,顶点为焦点的双曲线方程是
-
=1.
故答案为:
-
=1.
| x2 |
| 25 |
| y2 |
| 16 |
∴以椭圆
| x2 |
| 25 |
| y2 |
| 16 |
| x2 |
| 9 |
| y2 |
| 16 |
故答案为:
| x2 |
| 9 |
| y2 |
| 16 |
点评:本题考查椭圆的简单性质的应用,解题时要认真审题,注意双曲线的性质的灵活运用.
练习册系列答案
相关题目