题目内容
已知函数f(x)=
sinxcosx-cos2x+
(x∈R).则函数f(x)在区间[0,
]上的值域为______.
| 3 |
| 1 |
| 2 |
| π |
| 4 |
∵f(x)=
sinxcosx-cos2x+
=
sin2x-
+
=sin(2x-
).
当x∈[0,
],有2x-
∈[-
,
],-
≤sin(2x-
)≤
,
∴-
≤sin(2x-
)-1≤
,
故函数f(x)在区间[0,
]上的值域为 [-
,
],
故答案为 [-
,
].
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
当x∈[0,
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
∴-
| 1 |
| 2 |
| π |
| 6 |
| ||
| 2 |
故函数f(x)在区间[0,
| π |
| 4 |
| 1 |
| 2 |
| ||
| 2 |
故答案为 [-
| 1 |
| 2 |
| ||
| 2 |
练习册系列答案
相关题目