题目内容
已知正项数列{an}中,a1=1,点(
,an+1),(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)已知bn=(
)n-1,n∈N*,令Cn=
,求{Cn}的前n项和Tn.
| an |
(1)求数列{an}的通项公式;
(2)已知bn=(
| 1 |
| 2 |
| -1 |
| an+1log2bn+1 |
(1)∵点(
,an+1),(n∈N*)在函数y=x2+1的图象上.
∴an+1=an+1
∴an+1-an=1
∵a1=1,
∴数列{an}是以1为首项,1为公差的等差数列
∴an=n;
(2)∵an=n,bn=(
)n-1,n∈N*,
∴Cn=
=
=
=
-
∴{Cn}的前n项和Tn=
-
+
-
+…
-
=1-
=
| an |
∴an+1=an+1
∴an+1-an=1
∵a1=1,
∴数列{an}是以1为首项,1为公差的等差数列
∴an=n;
(2)∵an=n,bn=(
| 1 |
| 2 |
∴Cn=
| -1 |
| an+1log2bn+1 |
| -1 | ||
(n+1)log2(
|
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴{Cn}的前n项和Tn=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目