ÌâÄ¿ÄÚÈÝ
£¨1£©µ±a=8£¬d=4ʱ£¬Ö¤Ã÷£º¶¥µãA1¡¢A2¡¢A3²»ÔÚͬһÌõÖ±ÏßÉÏ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷£ºËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2xÉÏ£»
£¨3£©ÎªÊ¹ËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÇóaÓëdÖ®¼äËùÓ¦Âú×ãµÄ¹ØÏµÊ½£®
·ÖÎö£º£¨1£©Çó³öA1A2¡¢A1A3µÄбÂÊ£¬ÀûÓÃбÂʲ»ÏàµÈ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©È·¶¨¶¥µãAnµÄºá×ø±ê¡¢×Ý×ø±ê£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©¶¥µãAnµÄºá¡¢×Ý×ø±ê£¬ÏûÈ¥n-1£¬ÀûÓÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬¼´¿ÉÇóaÓëdÖ®¼äËùÓ¦Âú×ãµÄ¹ØÏµÊ½£®
£¨2£©È·¶¨¶¥µãAnµÄºá×ø±ê¡¢×Ý×ø±ê£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨3£©¶¥µãAnµÄºá¡¢×Ý×ø±ê£¬ÏûÈ¥n-1£¬ÀûÓÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬¼´¿ÉÇóaÓëdÖ®¼äËùÓ¦Âú×ãµÄ¹ØÏµÊ½£®
½â´ð£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£¬A1£¨8£¬4£©£¬A2£¨18£¬6£©£¬A3£¨32£¬8£©£¬
¡àkA1A2=
=
£¬kA1A3=
=
£®
¡ßkA1A2¡ÙkA1A3£¬
¡à¶¥µãA1¡¢A2¡¢A3²»ÔÚͬһÌõÖ±ÏßÉÏ£»
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá×ø±êxn=d+a1+a2+¡+an-1+
an=2£¨n+1£©2£¬
¶¥µãAnµÄ×Ý×ø±êyn=
an=2(n+1)£®
¡ß¶ÔÈÎÒâÕýÕûÊýn£¬µãAn£¨xn£¬yn£©µÄ×ø±êÂú×ã·½³Ìy2=2x£¬
¡àËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2xÉÏ£®
£¨3£©½â£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá¡¢×Ý×ø±ê·Ö±ðÊÇxn=d+
a+
(n-1)2d£¬yn=
[a+(n-1)d]
ÏûÈ¥n-1£¬¿ÉµÃxn=
yn2+d+
ΪʹµÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÔòÓÐ
½âÖ®£¬µÃd=4p£¬a=8p£®
¡àa£¬dËùÓ¦Âú×ãµÄ¹ØÏµÊ½ÊÇ£ºa=2d£®
¡àkA1A2=
| 6-4 |
| 18-8 |
| 1 |
| 5 |
| 8-6 |
| 32-18 |
| 1 |
| 7 |
¡ßkA1A2¡ÙkA1A3£¬
¡à¶¥µãA1¡¢A2¡¢A3²»ÔÚͬһÌõÖ±ÏßÉÏ£»
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá×ø±êxn=d+a1+a2+¡+an-1+
| 1 |
| 2 |
¶¥µãAnµÄ×Ý×ø±êyn=
| 1 |
| 2 |
¡ß¶ÔÈÎÒâÕýÕûÊýn£¬µãAn£¨xn£¬yn£©µÄ×ø±êÂú×ã·½³Ìy2=2x£¬
¡àËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2xÉÏ£®
£¨3£©½â£ºÓÉÌâÒâ¿ÉÖª£¬¶¥µãAnµÄºá¡¢×Ý×ø±ê·Ö±ðÊÇxn=d+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
ÏûÈ¥n-1£¬¿ÉµÃxn=
| 2 |
| d |
| a(d-a) |
| 2d |
ΪʹµÃËùÓж¥µãAn¾ùÂäÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬ÔòÓÐ
|
½âÖ®£¬µÃd=4p£¬a=8p£®
¡àa£¬dËùÓ¦Âú×ãµÄ¹ØÏµÊ½ÊÇ£ºa=2d£®
µãÆÀ£º±¾Ì⿼²éÇúÏßÓë·½³Ì£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿