题目内容

已知函数f(x)=
ax2+4x
,且f(1)=5.
(I)求a的值;
(Ⅱ)证明f(x)为奇函数;
(Ⅲ)判断函数f(x)在[2,+∞)上的单调性,并加以证明.
分析:(I)可得f(1)=
a+4
1
=5,解之可得;
(Ⅱ)可得f(x)=
x2+4
x
,x≠0,由函数的奇偶性可得;
(Ⅲ)任取x1,x2∈[2,+∞),且x1<x2,可得f(x1)-f(x2)=(x1-x2
x1x2-4
x1x2
<0,可得单调性.
解答:解:(I)由题意可得f(1)=
a+4
1
=5,
解之可得a=1;
(Ⅱ)可得f(x)=
x2+4
x
,x≠0
f(-x)=
(-x)2+4
-x
=
x2+4
-x
=-f(x)
故函数f(x)为奇函数;
(Ⅲ)可得f(x)=
x2+4
x
=x+
4
x

任取x1,x2∈[2,+∞),且x1<x2
则f(x1)-f(x2)=x1+
4
x1
-(x2+
4
x2

=(x1-x2)+
4
x1
-
4
x2
=(x1-x2)+
4(x2-x1)
x1x2

=(x1-x2)(1-
4
x1x2
)=(x1-x2
x1x2-4
x1x2

∵2≤x1<x2,∴x1-x2<0,x1x2>4,x1x2-4>0,
∴f(x1)-f(x2)=(x1-x2
x1x2-4
x1x2
<0
即f(x1)<f(x2),
故函数f(x)在[2,+∞)上单调递增.
点评:本题考查函数的单调性和奇偶性,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网