题目内容
已知函数f(x)=
,且f(1)=5.
(I)求a的值;
(Ⅱ)证明f(x)为奇函数;
(Ⅲ)判断函数f(x)在[2,+∞)上的单调性,并加以证明.
| ax2+4 | x |
(I)求a的值;
(Ⅱ)证明f(x)为奇函数;
(Ⅲ)判断函数f(x)在[2,+∞)上的单调性,并加以证明.
分析:(I)可得f(1)=
=5,解之可得;
(Ⅱ)可得f(x)=
,x≠0,由函数的奇偶性可得;
(Ⅲ)任取x1,x2∈[2,+∞),且x1<x2,可得f(x1)-f(x2)=(x1-x2)
<0,可得单调性.
| a+4 |
| 1 |
(Ⅱ)可得f(x)=
| x2+4 |
| x |
(Ⅲ)任取x1,x2∈[2,+∞),且x1<x2,可得f(x1)-f(x2)=(x1-x2)
| x1x2-4 |
| x1x2 |
解答:解:(I)由题意可得f(1)=
=5,
解之可得a=1;
(Ⅱ)可得f(x)=
,x≠0
故f(-x)=
=
=-f(x)
故函数f(x)为奇函数;
(Ⅲ)可得f(x)=
=x+
,
任取x1,x2∈[2,+∞),且x1<x2,
则f(x1)-f(x2)=x1+
-(x2+
)
=(x1-x2)+
-
=(x1-x2)+
=(x1-x2)(1-
)=(x1-x2)
,
∵2≤x1<x2,∴x1-x2<0,x1x2>4,x1x2-4>0,
∴f(x1)-f(x2)=(x1-x2)
<0
即f(x1)<f(x2),
故函数f(x)在[2,+∞)上单调递增.
| a+4 |
| 1 |
解之可得a=1;
(Ⅱ)可得f(x)=
| x2+4 |
| x |
故f(-x)=
| (-x)2+4 |
| -x |
| x2+4 |
| -x |
故函数f(x)为奇函数;
(Ⅲ)可得f(x)=
| x2+4 |
| x |
| 4 |
| x |
任取x1,x2∈[2,+∞),且x1<x2,
则f(x1)-f(x2)=x1+
| 4 |
| x1 |
| 4 |
| x2 |
=(x1-x2)+
| 4 |
| x1 |
| 4 |
| x2 |
| 4(x2-x1) |
| x1x2 |
=(x1-x2)(1-
| 4 |
| x1x2 |
| x1x2-4 |
| x1x2 |
∵2≤x1<x2,∴x1-x2<0,x1x2>4,x1x2-4>0,
∴f(x1)-f(x2)=(x1-x2)
| x1x2-4 |
| x1x2 |
即f(x1)<f(x2),
故函数f(x)在[2,+∞)上单调递增.
点评:本题考查函数的单调性和奇偶性,属基础题.
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
| 1 |
| 2x+1 |
A、
| ||
| B、2 | ||
C、
| ||
| D、3 |