题目内容

设函数f(x)=x2-lnx2,

(1)若x∈[,e]时,不等式f(x)>m的解集不是空集,求实数m的取值范围(e≈2.718 281 8…)

(2)若关于方程f(x)=x2+x-2a在区间(1,3)上有解,求实数a的取值范围.

解:(1)f′(x)=2x-=2,                                                               ?

x∈[,1]时,f(x)<0;当x∈(1,e)时,f′(x)>0.?

所以f(x)在[,1]上单调递减,在(1,E)上单调递增,而f()=+2,f(e)=e2-2>2e-2>e, +2<e,                                                                                                          

f(x)的值域为[1,e2-2].?

要使f(x)>m的解集不是空集,则m∈(-∞,e2-2).                                                    ?

(2)方程x2+x-2a=x2-lnx22lnx=2a-xlnx=a-在(1,3)上有解.?

设函数y1=lnx,y2=a-,即两函数的图象在区间(1,3)上有交点.?

所以a的取值范围为(,+ln3).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网