题目内容
已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).(Ⅰ)证明:数列{an+1-an}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若数列{bn}满足4b1-14b2-1…4bn-1=(an+1)bn(n∈N*),证明{bn}是等差数列.
分析:(Ⅰ)利用等比数列的定义,构造
=q≠0进行证明;
(Ⅱ)利用(Ⅰ)可先求an+1-an=2n,利用叠加法可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,从而可求an;
(Ⅲ)由已知可得2[(b1+b2+…+bn)-n]=nbn,利用递推公式可得2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1结合两式可证.
| an+2-an+1 |
| an+1-an |
(Ⅱ)利用(Ⅰ)可先求an+1-an=2n,利用叠加法可得an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,从而可求an;
(Ⅲ)由已知可得2[(b1+b2+…+bn)-n]=nbn,利用递推公式可得2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1结合两式可证.
解答:解:(Ⅰ)证明:∵an+2=3an+1-2an,
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
∴
=2(n∈N*).
∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列.
(Ⅱ)解:由(Ⅰ)得an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++2+1
=2n-1(n∈N*).
(Ⅲ)证明:∵4b1-14b2-14bn-1=(an+1)bn,
∴4b1+b2+…+bn-n=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0.③
nbn+2-(n+1)bn+1+2=0.④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
∴an+2-an+1=2(an+1-an),
∵a1=1,a2=3,
∴
| an+2-an+1 |
| an+1-an |
∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列.
(Ⅱ)解:由(Ⅰ)得an+1-an=2n(n∈N*),
∴an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1
=2n-1+2n-2++2+1
=2n-1(n∈N*).
(Ⅲ)证明:∵4b1-14b2-14bn-1=(an+1)bn,
∴4b1+b2+…+bn-n=2nbn
∴2[(b1+b2+…+bn)-n]=nbn,①
2[(b1+b2+…+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0.③
nbn+2-(n+1)bn+1+2=0.④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*),
∴{bn}是等差数列.
点评:本小题主要考查数列、不等式等基本知识的综合运用,考查化归的数学思想方法在解题中的运用,考查综合解题能力.
练习册系列答案
相关题目