题目内容
已知函数f(x)=| x |
| ax+b |
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设数列{an}满足a1=1,an+1=f(an)≠1,n∈N*.求数列{an}的通项公式;
(Ⅲ)定义min{a,b}=
|
| 1 |
| n |
分析:(Ⅰ)由题设条件知2a+b=2.当△=(b-1)2=0时,b=1,a=
,f(x)=
;当△=(b-1)2≠0时,a=1,f(x)=1(x≠0).
(Ⅱ)由题意知当f(x)=1时,an+1=1,不合题意,所以f(x)=
,an+1=
,∴
=
+
,由此可得数列{an}的通项公式.
(Ⅲ)由题设条件知,an-
=
-
=
≥0,n∈N*,所以an≥
,bn=min{an,
}=
,再用分析法证明Sn>ln(n+1).
| 1 |
| 2 |
| 2x |
| x+2 |
(Ⅱ)由题意知当f(x)=1时,an+1=1,不合题意,所以f(x)=
| 2x |
| x+2 |
| 2an |
| an+2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
(Ⅲ)由题设条件知,an-
| 1 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| n-1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
解答:解:(Ⅰ)由f(2)=
=1,得2a+b=2;
又
=x,有且仅有一个解,
即ax2+(b-1)x=0,有唯一解满足ax+b≠0.
∵a≠0,∴当△=(b-1)2=0时,b=1,x=0,则a=
,此时f(x)=
,
又当△=(b-1)2≠0时,x1=-
≠0,x2=0,因为ax1+b=1≠0,
所以ax2+b=b=0,则a=1,此时f(x)=
=1(x≠0)
综上所述,f(x)=
,或者f(x)=1(x≠0);
(Ⅱ)a1=1,an+1=f(an)≠1,n∈N*,当f(x)=1时,an+1=1,不合题意,
则f(x)=
,an+1=
,
∴
=
+
,
则
=1+
(n-1),an=
(Ⅲ)由(Ⅱ)知,an-
=
-
=
≥0,n∈N*
∴an≥
,则bn=min{an,
}=
,所以Sn=1+
+
+…+
设数列{cn}的前n项和为Tn=ln(n+1),则c1=T1=ln2<lne=1
当n≥2时,cn=Tn-Tn-1=ln(n+1)-lnn=ln
=ln(1+
),要证明ln(1+
)<
,n∈N*
令1+
=t>1,只要证明:lnt<t-1,其中t>1.
令g(x)=x-1-lnx(x≥1),则g′(x)=1-
=
≥0,所以g(x)在[1,+∞)上是增函数,
则当x>1时,g(x)>g(1)=0,即x-1>lnx(x>1),所以
>cn=ln(1+
),n∈N*,
则Sn=1+
+
+…+
>c1+c2+…+cn=Tn=ln(n+1).
| 2 |
| 2a+b |
又
| x |
| ax+b |
即ax2+(b-1)x=0,有唯一解满足ax+b≠0.
∵a≠0,∴当△=(b-1)2=0时,b=1,x=0,则a=
| 1 |
| 2 |
| 2x |
| x+2 |
又当△=(b-1)2≠0时,x1=-
| b-1 |
| a |
所以ax2+b=b=0,则a=1,此时f(x)=
| x |
| x |
综上所述,f(x)=
| 2x |
| x+2 |
(Ⅱ)a1=1,an+1=f(an)≠1,n∈N*,当f(x)=1时,an+1=1,不合题意,
则f(x)=
| 2x |
| x+2 |
| 2an |
| an+2 |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
则
| 1 |
| an |
| 1 |
| 2 |
| 2 |
| n+1 |
(Ⅲ)由(Ⅱ)知,an-
| 1 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| n-1 |
| n(n+1) |
∴an≥
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
设数列{cn}的前n项和为Tn=ln(n+1),则c1=T1=ln2<lne=1
当n≥2时,cn=Tn-Tn-1=ln(n+1)-lnn=ln
| n+1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
令1+
| 1 |
| n |
令g(x)=x-1-lnx(x≥1),则g′(x)=1-
| 1 |
| x |
| x-1 |
| x |
则当x>1时,g(x)>g(1)=0,即x-1>lnx(x>1),所以
| 1 |
| n |
| 1 |
| n |
则Sn=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
点评:也可用数学归纳法证明,为此,先证明
>ln(1+
),即证:lnt<t-1,其中t>1.
| 1 |
| n+1 |
| 1 |
| n+1 |
练习册系列答案
相关题目